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1. Hadronic Physics Self-Assessment

Over the past three years, the discovery of many new states and remarkably incisive explorations
of a broad range of phenomena have renewed interest in hadronic physics and spurred many lively
conversations between theory and experiment. It seems appropriate, when the subject is in a healthy
state of ferment, to begin with a brief assessment of the value and aspirations of hadronic physics.

Hadron phenomenology and spectroscopy does not test the standard model. We have a qualita-
tive understanding of QCD phenomenology, but many aspects are not calculable from first principles.
While we may learn how to refine our approximations to QCD, much analysis of experimental infor-
mation relies on highly stylized, truncated pictures of theimplications of the theory. We make models
for new (and old!) states: approximations such as potentialmodels, or intuitive pictures of substruc-
ture. The competing pictures are not mutually exclusive; quantum superpositions are possible. We
will never discard QCD as the theory of the strong interactions if these pictures fail for the next state
we find.

These are fair observations, and they merit our serious attention. I would note that there is value
to both fundamental and applied science, and that the apparently less glamourous work of applied
science may be just what we need to get at the fundamental lessons. Moreover, exploration—the task
of discovering what phenomena exist and of developing systematics—helps us to understand what
the fundamental questions are, and how we might best addressthem. It was, after all, the tension
among the quark model of hadrons, the parton-model description of deeply inelastic scattering, and
the nonobservation of free quarks that led us to quantum chromodynamics. The construction of a
crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories was a foundational event
in string theory [1].

Physics doesn’t advance by perturbation theory alone, and it is worth recalling that one of QCD’s
signal achievements is explaining what sets the mass of the proton—or, if you like, what accounts for
nearly all the visible mass of the Universe. The insight thatthe mass of the proton arises from the
energy stored up in confining three quarks in a small volume, not from the masses of the constituents
themselves, is a landmark in our understanding of Nature [2]. The value of that insight isn’t dimin-
ished because it is a little bit qualitative, or because a quantitative execution of the idea requires the
heavy machinery of lattice field theory1 [4, 5].

More generally, there is great value in a convincing physical picture that can show us the way to an
answer (whether or not precise and controlled), or show thatsome tempting simplifying assumptions
are unwarranted. The chiral quark model [6], which identifies the significant degrees of freedom on
the 1-GeV scale as constituent quarks and Goldstone bosons,offers a nice example. It points to the
u-d asymmetry in the light-quark sea of the proton [7], and predicts a negative polarization of the
strange (but not antistrange) sea, casting doubt on a seemingly harmless assumption that underlies the
Ellis–Jaffe sum rule [8]. A lifetime of staring atLQCD wouldn’t lead to these expectations.

We can valueanschaulichexplanations as sources of intuition and instruments of exploration,
while keeping clearly in mind their limitations, as we try toaddress many open-ended questions,

1See Ref. [3] for contributions to the Hadronic Physics parallel sessions.
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including: What is a hadron? What are the apt degrees of freedom? What symmetries are fruitful?
What are the implications of QCD under extreme conditions?

Emergent behavior—in the form of phenomena that are not simply derived from the underlying
microphysics—is, moreover, quite ubiquitous in particle physics, and especially in hadronic physics.
For example, as QCD becomes strongly coupled at low energies, new phenomena emerge that are
not immediately obvious from the Lagrangian. Confinement and chiral symmetry breaking, with the
implied appearance of Goldstone bosons, are specific illustrations. A graceful description entails new
degrees of freedom that may be expressed in a model or—in the best of cases—in a new effective field
theory.

The synthesis of principles through dialogue with experiment is central to the way hadronic
physics is constructed, and runs through the agenda of the parallel sessions. I am firmly convinced
that decoding hadronic phenomena in today’s experiments develops habits of mind that we will cherish
when the LHC brings surprises.

2. Where Does the Proton’s Spin Reside?

Contributions to the parallel session reminded us that we donot have a complete answer to
the question, “What is a proton?” The spin of a polarized proton may be partitioned among the
quarks (and antiquarks), gluons, and orbital angular momentum according to the expression12 =
1
2∆Σ+∆G+Lq+Lg. New measurements from the COMPASS experiment improve the determination
of the quark-antiquark component to∆Σ = 0.237+0.024

−0.029, and anchor the gluon contribution atx = 0.1
as∆G

G (xg = 0.1) = +0.024±0.089±0.057 [9, 10]. At the same time, studies of transverse spin effects
in the HERMES experiment give evidence for orbital angular momentum carried by the quarks [11].
BELLE also contributes to this program by measuring the fragmentation function of a transversely
polarized quark [12]. This area offers but one example of diverse experiments making common cause.

3. Searching for Connections

The essence of doing science consists inmaking connectionsthat lead us beyond independent
explanations for distinct phenoma toward a coherent understanding of many phenomena. A network
of understanding helps us see how different observations fittogether and—very important—helps us
know enough to recognize that somethingdoesn’t fit.

Connections among experiments or observations are not the only important ones. Whenever it is
possible, we need to make connections between experimentalsystematics, phenomenological models,
and the QCD Lagrangian—either directly, or through effective field theories, lattice field theory, or
a controlled approximation to full QCD. I would also stress the potential value of reaching toward
connections with our knowledge of nuclear forces and with the phenomena that occur in nuclear
matter under unusal conditions.

We recognize different circumstances under which various approximations to QCD can be re-
garded as controlled expansions in small parameters. Nonrelativistic QCD applies to heavy-heavy
(Q1Q̄2) mesons, for which the quark masses greatly exceed the QCD scale parameter,mQi ≫ ΛQCD.
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Befitting its aptness for the nonrelativistic limit, NRQCD takes as its expansion parameterv/c, the
heavy-quark velocity divided by the speed of light. Heavy-quark effective theory (HQET) applies
usefully to heavy-light (Qq̄) systems, for whichmQ ≫ ΛQCD. In first approximation, the spin of the
heavy quark is regarded as static, so the “light-quark spin”~jq =~L+~sq is a good quantum number. The
relevant expansion parameter isΛQCD/mQ. Chiral symmetry is a valuable starting point for light quark
systems (q1q̄2) with mqi ≪ ΛQCD. In this case, the expansion parameter compares the current-quark
mass to the scale of chiral-symmetry breaking, and is generally taken asmq/4π fπ, where fπ is the
pion decay constant. In a growing array of settings, latticeQCD embodies a controlled approximation
that expresses the full dynamical content of the theory [13].

4. Seeking the Relevant Degrees of Freedom

Much of our insight into how hadrons behave follows from the simplifying assumption that
mesons are quark–antiquark states, baryons are three-quark states, and that the quarks have only
essential correlations. In the case of baryons, this reasoning leads us to the plausible starting point of
SU(6) (flavor-spin) wave functions, which indeed offer a useful framework for discussing magnetic
moments and other static properties. Some well-known observations, however, show us the limita-
tions of the zeroth-order guess. If we examine deeply inelastic scattering in the limit asx→ 1, spin
asymmetries indicate that the SU(6) wave functions are inadequate [14], and the ratioFn

2 /F p
2 is far

from the uncorrelated expectation of2
3 [15].

Under what circumstances might it be fruitful—or even essential—to consider diquarks as phys-
ical objects [16]? The algebra of SU(3)c tells us that the3⊗3 quark–quark combination is attractive
in the 3∗ representation that corresponds to an antisymmetric diquark structure. A simple analy-
sis suggests that the attraction of[qq]3∗ is half as strong as that of the[qq̄]1 (3⊗ 3∗ → 1) channel.
For many years, it has seemed to make sense to regard members of the scalar nonet {f0(600) =

σ,κ(900), f0(980),a0(980)} as qqq̄q̄ states organized as[[qq]3∗ [q̄q̄]3]1 [17]. Recently,intrinsic di-
quarks(|uuudc̄c〉) and intrinsic double-charm Fock states (|uudc̄ccc̄〉) have been advanced as an ex-
planation of the production of the SELEXΞ(ccd) andΞ(ccu) states [18]. Diquarks as objects have
elicited new attention under the stimulus of experimental evidence for pentaquark states [19, 20, 21].
(The attention to pentaquarks should be seen as part of a broader investigation into the existence of
configurations, or body plans, beyondqqq and qq̄.) That work, in turn, has led Wilczek and col-
laborators to revisit the Chew–Frautschi systematics ofN,∆ resonances [22], and to assert that it is
useful to view even low-spin, light baryons asq[qq]3∗ configurations. What can lattice QCD tell us
about the shape ofqqqbaryons—both at the lowest spins and at high angular momenta[23]? Can the
quark–diquark picture be reconciled with intuition from the 1/Nc expansion [24, 25]?

It is worth testing and extending theq[qq]3∗ proposal by considering its implications for doubly
heavy (QQq) baryons. The comparison with heavy-light (Qq̄) mesons offers a chance to calibrate
the attractive forces in the3∗ and color-singlet channels [26, 27]. Similarly, extendingstudies of
the systematics ofqq· q̄q̄ states toQq· Q̄q̄ states should, over the long term, develop and challenge
the way we think about diquarks. Finally, in heavy-ion collisions, we should be alert for tests of
the utility of diquarks in color–flavor locking, color superconductivity, and other novel phenomena.
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Tugging the diquark concept this way and that will help elucidate the value of colorspin [28] as an or-
ganizing principle for hadron spectroscopy, and help us understand the relevance of color-nonsinglet
spectroscopy [29]. Similar in their aspirations are the considerations of diquark–triquark configura-
tions [30] and of the power of the chiral-soliton picture forbaryon spectroscopy [31, 32, 33].

5. Exotic Baryons (Pentaquarks)

Over the past three years, numerous experiments have reported evidence for narrow exotic baryons
carrying quantum numbers incompatible with the standardqqq body plan.2 These reports include
many sightings ofΘ+(≈ 1540), with K+n quantum numbers; a recent claim ofΘ++(1530), with K+p
quantum numbers, in the STAR experiment at RHIC [35]; evidence forΞ−−,0(1862) and their antipar-
ticles in the NA49 experiment at CERN; and evidence for a baryon with negative charm,Θ0

c(3099),
in the H1 experiment at DESY. All of these states could be interpreted asqqqqq̄ pentaquarks, and
those composed of light quarksu,d,salone could be assigned to a10∗ representation of flavor SU(3).
It is by no means obvious on dynamical grounds that narrow pentaquarks should populate full mul-
tiplets. Quantitative information about pentaquarks—or other states that lie beyond the 1960s quark
model,3 but within the spectrum allowed by quantum chromodynamics—would allow us to refine
heuristic pictures of hadron structure and sharpen our understanding of QCD in the confinement limit.
Accordingly, the pentaquark candidates have elicited muchtheoretical attention.

Many sensitive, high-resolution experiments do not support the observation of pentaquarks. In-
deed,no claim is unchallenged,and it is hard to argue that every experiment—whether offering posi-
tive or negative evidence—is both significant and correctlyinterpreted.

Recently, the two experiments that began the pentaquark rush have reported new data. The LEPS
experiment [37] has taken new runs on liquid hydrogen and liquid deuterium targets. In the reaction
γd → K−pX, they see excesses in the mass spectrum of particles recoiling againstK−p at 1.53 GeV
and 1.6 GeV; at the lower peak, the ratio of signal to

√
signal+background is approximately 5. The

CLAS experiment at JLab has taken data on hydrogen and deuterium with samples about an order of
larger than in their original experiment. Inγp→ KSK+n with approximately 1500 counts per 4-MeV
bin, they see noΘ+ signal [38]. There is also no sign ofΘ+ in their γd → K−pK+n sample [34]; an
increased estimate of background reduces the significance of their original claim to≈ 3σ.

Here in Lisbon, we have heard limits on pentaquark production in Z0 decays from the DELPHI
experiment [39]; the nonobservation ofΘ+,Ξ−− in the HERA-B experiment [40]; and status reports
on the contending evidence on strange and charmed pentaquarks from thee±p collider experiments
H1 and ZEUS [41, 42]. TheB-factory experiments BaBar and Belle reported limits on pentaquark
production based on the study of interactions with detectorelements [43, 44], a lovely technique.

The case for exotic baryons remains unproved. If you wonder how it could be possible for
an apparently robust signal, confirmed in multiple experiments, to prove misleading, I refer you to
the great sensation of the 1969 Lund Conference, the two-peak structure of the split-A2 (now a2)
meson [45].

2See Volker Burkert’s summary at Uppsala [34] for a recent survey of the evidence.
3Exotic qqq̄q̄ “tetraquarks,” for example [36].
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6. Dalitz-Plot Analyses

Among many parallel-session contributions on production and decay dynamics, I would like
to point to three applications of Dalitz-plot techniques that are representative of a new era in the
extraction of decay amplitudes and relative phases. CLEO-c reports a large number of studies in
progress [46]. Among them, the aim of determining the strongphase between the decaysD0 →
K±K∗∓ for extraction ofφ3 = γ from B± → K±K∗∓K± has a direct practical application.

In BaBar’s study of theD0 → K̄0K+K− Dalitz plot, the dominant channels are seen to beD0 →
K̄0a0(980), K̄0ϕ,K−a+

0 (980) [47]. The amplitude information offers new possibilities for studying
the scalar nonet, which is also a target of the KLOE studies ofe+e− → ϕ → γ f0(980),γa0(980) [48].
KLOE has also examined 5-γ and 7-γ final states in the reactione+e− → ϕ → γη. Their noteworthy
results include a measurement of the slope parameter in theπ0π0π0 channel and a determination of
the branching fractionB (η → π0γγ) = (8.4±2.7±1.4)×10−5, about ten times smaller than a 1984
GAMS result, and in line with chiral perturbation theory

7. Beyond Idealizations

There is potentially great value to be gained by stretching our models and calculations beyond
the domains in which we first encountered them. By leaving thecomfort zone, we may happen on
effects that were unimportant—or concealed—in the original setting. An excellent example is the
prospect of extending our descriptions of theψ (cc̄) andϒ (bb̄) systems to the spectrum ofBc (bc̄)
mesons [49]. Several factors contribute to the theoreticalinterest inBc. Thebc̄ system interpolates
between heavy-heavy (QQ̄) and heavy-light (Qq̄) systems. The unequal-mass kinematics and the fact
that the charmed quark is more relativistic in abc̄ bound state than in the correspondingcc̄ level imply
an enhanced sensitivity to effects beyond nonrelativisticquantum mechanics.

The new element inbc̄ theory is lattice QCD calculations that include dynamical quarks. A
Glasgow–Fermilab collaboration predictsM(Bc) = 6304±20 MeV [50]. Establishing theBc ground
state in nonleptonic decays—πJ/ψ,a1J/ψ are the most promising final states—will pin down the mass
with greater certainty than is possible in the semileptonicJ/ψℓν channel. A first measurement by the
CDF experiment in theJ/ψπ channel givesM(Bc) = 6287±5 MeV [51], in pleasing agreement with
the lattice computation. Beginning to reconstruct some part of thebc̄ spectrum inγ or π+π− cascades
to the ground state will be an experimentaltour-de-force.

Let us take a moment to review some elementary points about meson taxonomy that are relevant
to intermediate cases—including thebc̄ system. Two useful classification schemes are familiar in
atomic spectroscopy as theLSand j j coupling schemes. Any state can be described in any scheme,
through appropriate configuration mixing, but it is prudentto keep in mind that a choice of basis can
guide—or maybe misguide—our thinking.

For equal-mass meson systems (qq̄ or QQ̄) it is traditional to couple the orbital angular momen-
tum,~L, with the total spin of the quark and antiquark,~S=~sq +~sq̄. This is the standard practice for
light mesons, and is now familiar for the designation of quarkonium (cc̄ andbb̄) levels. The good
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quantum numbers are thenS, L, andJ, with ~J =~L+~S, and we denote the spin-singlet and spin-triplet
levels as1S0 – 3S1; 1P1 – 3P0,1,2; 1D2 – 3D1,2,3; and, in general, as1LL – 3LL−1,L,L+1.

In the case of heavy-light (Qq̄) mesons, it is suggestive to couple the difficult-to-flip heavy-quark
spin,~sQ, with the “light spin,”~jq =~L +~sq. The good quantum numbers are thenL, jq, andJ, where
~J =~sQ +~jq, and the low-lying levels are

L = 0 : jq = 1
2 : 0− - 1−

L = 1 : jq =

{

1
2 :
3
2 :

0+ - 1+

1+ - 2+
, etc.

In the absence of configuration mixing, this classification implies that thejq = 3
2 states will decay

only through thed-wave, and so will be narrow. Thejq = 1
2 states, for whichs-wave decay is allowed,

will in general be broad. It bears emphasis that theDs, Bs systems could be exceptions to this rule,
because of the limited phase space available for kaon emission.

It makes sense to seek out intermediate cases wherever we canfind them. We expect, for example,
mixed 1+ levels in theBc = bc̄ spectrum, but detailed information is not likely to be in ourhands
soon. A more accessible case might be that of the strange particles (sq̄), for which theqq̄-inspiredLS
classification has been the standard. Perhaps some unexpected insights might come from considering
strange mesons as heavy-light (Qq̄) states [52]. In any event, it is worth asking how infallibleis the
intuition we derive from regardingDs states as heavy-light.

Here in Lisbon, we heard an indication from the Belle experiment that configuration mixing
may not be negligible for the 1+ Ds levels. An angular analysis of the decayDs1(2536) → D∗+KS

indicates the presence of a larges-wave amplitude [53]. That is to say, the putativejℓ = 3
2 state seems

not to decay in a pured-wave. Nevertheless,Ds1(2536) remains narrow, with a total width less than
2.3 MeV. Is this because thejℓ = 1

2 level with which it might mix is anomalously narrow (as we shall
recall next), or is there another explanation for the smalls-wave width?

Two states that might be identified as thejq = 1
2 cs̄ levels are well established, the 0+ D∗

sJ(2317)→
Dsπ0 and 1+ DsJ(2460) → Dsγ,D∗

sπ0. Their centroid lies some 135 MeV below that of thejℓ = 3
2

states, the 1+ Ds1(2536) and 2+ D∗
s2(2573). The low masses disagree with relativistic potential model

predictions, and mean that the expected strong decay by kaonemission is kinematically forbidden.
The fact thatD∗

sJ(2317) andDsJ(2460) appeared in isospin-violating decays stimulated interpre-
tations beyond the standardcs̄ body plan, includingDK molecules and tetraquarks. It is noteworthy
that the BaBar experiment looked for, but did not find, partners with charge 0 or±2 [54]. Radiative
decay rates should be an incisive diagnostic [55]. For any interpretation of theDsJ states, it is imper-
ative to predict what happens in theBs system. Experimenters need not wait for the theorists to place
their bets. Tracking down theBsJ analogues should be a high priority for CDF and DØ!

I think the evidence is persuasive that theDsJ levels are ordinarycs̄ states at lower masses than
anticipated, and I find it intriguing that these states mightgive us a window on chiral symmetry in a
novel setting [56, 57, 58]. Let us suppose that, contrary to standard intuition in light-quark systems,
chiral symmetry and confinement might coexist in heavy–light mesons. Then we would expect to
observe chiral supermultiplets: states with orbital angular momentaL,L+1, but the same value ofjq.
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Specifically, we should find the paired doublets

jq = 1
2 : 1S(0−,1−) and 1P(0+,1+);

jq = 3
2 : 1P(1+,2+) and 1D(1−,2−).

Chiral symmetry predicts equal hyperfine splitting in the paired doublets,MDs(1+)−MDs(0+) = MDs(1−)−
MDs(0−), in agreement with what is observed. So far, the predictionsfor decay rates match experi-
ment [59, 60]. In addition to confronting chiral symmetry’spredictions for theDs and other families,
we need to ask to what extent the coexistence of chiral symmetry and confinement is realized in QCD,
and how chiral symmetry may be restored in excited states [61].

8. Quarkonium Spectroscopy

In the parallel sessions, we had the pleasure of hearing a flood of beautiful new results onψ and
ϒ spectroscopy. Here are some of the highlights.

The CLEO experiment reported the discovery of the long-sought hc(11P1)level inψ′ → π0hc [62].
The mass of the new state,M(hc) = 3524.4±0.6±0.4 MeV, is about 1 MeV below the 13PJ centroid.
Belle reported extensive studies ofγγ → ηc,χc0,χc2 → h+h−,h+h−h+h− [63]. Several of the rates
Γ(ηc → γγ)B (ηc → f ) are about one-third of current world averages [64]. CLEO hasobserved the
rare decayψ(3770) → ππJ/ψ at a branching fractionB (ψ(3770) → π+π−J/ψ) = (214±25±22)×
10−5 [65]. This is important engineering information for anticipating the properties of the 11,3D2

levels. They have identified a rare radiative decay ofψ′′, with a partial widthΓ(ψ(3770) → γχc1) =

75± 18 keV [66]. Finally—in the charmonium sector—the KEDR experiment in Novosibirsk has
employed resonance depolarization techniques to make precise energy determinations that enable
them to characterize the massesM(ψ′) = 3686.117± 0.012± 0.015 MeV andM(ψ′′) = 3773.5±
0.9±0.6 MeV [67].

In thebb̄ sector, CLEO has presented another measurement of great engineering significance, the
determination of theB(∗)

s yield on the 5S resonance:B (ϒ(5S) → B(∗)
s B̄(∗)

s ) = 16.0±2.6±6.3% [68],
and has made a precise determination of the 1S, 2S, and 3S leptonic widths [69]. One number that
shows the quality of the measurements isΓ(ϒ(1S) → e+e−) = 1.336± 0.009± 0.019 keV. Such
information will provide a good test of lattice calculations of the bottomonium spectrum [70] and
provides needed input for improved potential-model descriptions. There is also news about hadronic
cascades. The Belle experiment has observed 38±6.9 events consistent with the transitionϒ(4S) →
π+π−ϒ(1S), corresponding to a branching fractionB = (1.1± 0.2± 0.4)× 10−4 [63]. CLEO has
offered evidence for the first observation of hadronic cascades not involving a3S1 level, determining
partial widthsΓ ≈ 0.9 keV for the transitionsχ′

b(2
3P2,1) → π+π−χb(13P2,1) [69].

9. New States Associated with Charmonium

In the three years since the Belle Collaboration announced the observation of the 21S0 cc̄ state in
exclusiveB decays [71], new states have arrived in great profusion. In addition to the 11P1 hc(3524)
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level already mentioned [72], we have credible evidence forfive new particles connected with the
charm-anticharm system. The best known of these isX(3872) [73], clearly established in several
experiments. On current evidence, it is likely to be aJPC = 1++ state, and isprobably not charmonium.
More about theX(3872) shortly.

The remaining particles need confirmation; each has been seen only in a single experiment so
far. Belle [73] has reportedY(3940± 11) in the decayB → KωJ/ψ; it is a relatively broad state,
with a total widthΓ = 92± 24 MeV. Belle also reports the stateX(3936± 14), seen ine+e− →
J/ψ + X [74]. It is observed to decay intoDD̄∗, but notDD̄, which suggests an unnatural parity
assignment. The total width isΓ = 39± 24 MeV. These characteristics makeX(3936) a plausible
η′′

c(3
1S0) candidate [75, 76].
Belle has observed a narrow (Γ ≈ 20 MeV) state inγγ → DD̄ that they callZ(3931±4±2) [77].

The production and decay characteristics are consistent with a 2++ assignment, and this state is a
plausibleχ′

c2 (23P2) candidate [75, 76]. The most recent addition to the collection isY(4260), a 1−−

level seen by BaBar ine+e− → γπ+π− J/ψ [78], with supporting evidence fromB→ K−J/ψππ [79].
As if seven new states were not enough, there are more charmonium levels to be found [80, 81].

Two of these—the unnatural parity 11,3D2 states that should lie betweenDD̄ andDD̄∗ threshold—
have been anticipated for three decades. The 2−− ψ2(3831) (13D2) state should be seen to decay
into γχc1,2 and ππJ/ψ, but not toDD̄. Its hyperfine partner, the 2−+ ηc2(3838) (11D2), should be
observed in decays toγhc andππηc, but not toDD̄. Then there are a couple of states, along with the
23P2 and perhaps 31S0 levels mentioned above, that we have only come to anticipateas narrow on the
basis of recent coupled-channel calculations. These are the 3−− ψ3(3868) (13D3), which should be
observed as a quite narrow (Γ∼<1 MeV) peak inDD̄, and the 4++ ψ4(4054) (13F4), which should also
be seen as aDD̄ resonance withΓ∼<5 MeV. And let us not forget the possibility that gluonic degrees
of freedom will manifest themselves in the form of hybridcc̄g levels [82, 83, 84].

All of theseXs andYs are very confusing, so we may have to admit that our alphabetis not rich
enough to accommodate the new reality of charmonium spectroscopy. By good fortune, Dr. Seuss,
author of the children’s classic,O Gato do Chapéu,has anticipated our need and extended the latin
alphabet to include new letters such asquan, yekk, spazz, andfloob [85]. Should we assign to
the Particle Data Group the responsibility of deciding which particle is ayekk and which afloob, or
should that honor rest with the discoverers?

10. What is X(3872)→ ππJ/ψ?

The X(3872) is the best studied of the newcc̄-associated states, and it has been subjected to a
broad range of diagnostic tests. Upon discovery,X(3872) seemed a likely candidate forψ2 (or perhaps
ψ3), but the expected radiative transitions toχc states have never been seen. Theππ mass spectrum
favors high dipion masses, suggesting aJ/ψρ decay that is incompatible with the identification of
X(3872) → π+π−J/ψ as the strong decay of a pure isoscalar state. Observing—or limiting—the
π0π0 J/ψ decay remains an important goal. An observedJ/ψ3π decay suggests an appreciable transi-
tion rate toJ/ψω. Belle’s 4.4-σ observation of the decayX(3872)→ J/ψγ determinesC= +, opposite
to the charge-conjugation of the leading charmonium candidates. Finally, an analysis of angular dis-
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tributions supports the assignmentJPC = 1++, but the mass ofX(3872) is too low to be gracefully
identified with the 21P1 charmonium state, especially ifZ(3931) is identified as the 23P2 level. [It is
important to note that our expectations for charmonium states aboveDD̄ threshold have matured to
include the coupling ofcc̄ levels with open charm.]

If X(3872) is not a charmonium level, what might it be? Three interpretations take the near-
coincidence of the new state’s mass and theD0D̄∗0 to be a decisive clue: ans-wave cusp atD0D̄∗0

threshold [86], aD0 – D̄∗0 “molecule” bound by pion exchange [87, 88, 89, 90], and a diquark–
antidiquark “tetraquark” state[cq][c̄q̄] [91, 92, 93]. What distinctive predictions might allow us to
put these interpretations to the test? On the threshold enhancement interpretation, we should expect
bumps at many thresholds, but no radial or orbital excitations. If pion exchange is decisive, then
there should be no analogue molecule atDsD̄∗

s threshold. The tetraquark interpretation suggests that
X(3872) should be split into two levels, because[cu][c̄ū] and [cd][c̄d̄] would be displaced by about
7 MeV. If diquarks are useful dynamical objects, there should be a sequence of excited states as well.

The implication thatX(3872) could be resolved into two states has already attracted experimental
attention from BaBar [79]. The evidence is far from decisive, but I report it to you as an illustration
of the lively dialogue between experiment and theory that has characterized this subject. 61.2±15.3
events that fit the hypothesisB− → K−X(3872) lead to a mass of 3871.3±0.6±0.1 MeV, whereas
8.3±4.5 B0 → K0X(3872) events yield 3868.6±1.2±0.2 MeV. The mass difference, 2.7±1.3±
0.2 MeV, doesn’t yet distinguish between oneX and two. The same study compares the ratio of the
charged and neutral decays,R ≡ B (B0 → K0X(3872))/B (B− → K−X(3872)) = 0.50±0.30±0.05,
to be compared with the expectations of the tetraquark (R ≈ 1) and molecule (R ∼<0.1) pictures.

Braaten & Kusunoki [94] have called attention to a fascinating phenomenon (known in nuclear
physics as a Feshbach resonance) that should occur if a dynamical level and a threshold coincide: an
extremely large scattering length that is governed (inversely) by the difference between the bound-
state energy and the threshold. I do not think thatX(3872) meets the conditions, but we should be
attentive for this circumstance—perhaps even for one of theother new states.

The campaign to understandX(3872) has called on numerous heuristic pictures, and has spurred
theorists to elaborate simple images into calculational tools. Coupled-channel potential models appear
to be useful interpretive tools; they have help us learn whatX(3872) is not, and we will see how helpful
they can be in making sense of the other new states. One can only be impressed with the increasing
effectiveness of lattice QCD (below threshold) [13, 95, 70]. We still await a definitive sighting of
the influence of the gluonic degrees of freedom on the spectrum of quarkonium or states related to
quarkonium. To test our understanding ofX(3872) and the other new states, it would be extremely
helpful to know what happens in thebb̄ system. For a more extensive recent discussion of the new
states in the charmonium system, see Ref. [96].

11. Outlook4

Hadronic physics is rich in opportunities. Models—disciplined by principles—are wonderful ex-
ploratory tools that can help us to uncover regularities andsurprises. It is important that phenomeno-

4See Ref. [97] for a different emphasis and more expansive view of the subject.
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logical studies make contact at every opportunity with symmetries and with lattice QCD, especially as
the incorporation of dynamical quarks becomes routine. Ourgoal—it is the goal of all science—must
be to build coherent networks of understanding, not one-offinterpretations of data. In both experiment
and theory, in both exploration and explanation, we profit bytuning between systems with similar but
not identical characteristics, and by driving models beyond their comfort zones.

In spectroscopy, I see much to be gained from a comparison of the hadronic body plans we know:
quark–antiquark mesons and three-quark baryons, with the diversity that springs from light and heavy
quarks. Light-quark mesons, heavy-light mesons, and heavyquarkonia call upon different elements
of our theoretical armamentarium, as do baryons containing3, 2, 1, or 0 light quarks—but all are
hadrons, and some of what we learn in one setting should serveus in another. Do other body plans
occur in Nature—two-quark–two-antiquark mesons, four-quark–one-antiquark baryons, and more?
What rôle do diquarks play in determining the hadron spectrum and interactions? And what lessons
might we draw from the behavior of hadronic matter under unusual conditions, including those that
prevail in heavy-ion collisions?

High-rate experiments more incisive than ever before are giving us new looks at familiar phe-
nomena and new opportunities to exploit established techniques. Dalitz-plot analyses offer exquisite
sensitivity to small amplitudes and access to phase information. We are gaining a richer understanding
of diffraction, hadronization, and the structure of the proton.

In addition to the specific measurements I have mentioned andthat others have highlighted in the
course of this meeting, I would like to underscore the value of broad searches for new mesons and
baryons. BaBar’s discovery ofDsJ and Belle’s string of observations remind us that you don’t have
to know precisely what you are looking for to find something interesting: combining a convenient
trigger particle with an identifiable hadron or two—(J/ψ or ϒ)+π,ππ,K,KS, p,Λ,γ,η,ω, . . .—can be
very profitable indeed.

In experiment and theory alike, let us use our models and our truncated versions of QCD to guide
our explorations and organize our understanding. Let us keep in mind the limitations of our tools as
we focus on what we can learn of lasting value. Let us, above all, try to discern where the real secrets
are hidden.
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